КАБЕЛИ СВЯЗИ

МКПВБАШП, МКПВБАБПШП, МКПВБЭПП, МКПВБЭППБ6ШП

Кабели комбинированные с оптическими волокнами и медными жилами для технологической связи и устройств СЦБ железных дорог.

ТУ 16.К71.316 – 2002

КОД ОКПД-2 27.32.13.151

ПРИМЕНЕНИЕ

Кабели предназначены для цепей технологической связи и устройств сигнализации, централизации и блокировки (СЦБ) на сети железных дорог России для работы в волоконно-оптических системах передачи по оптическим волокнам, в цифровых и аналоговых системах передачи в диапазоне частот до 400 кГц по парам высокочастотных четверок, в электрических установках сигнализации, централизации, блокировки и автоматики при номинальном напряжении 380 В переменного тока частотой 50 Гц или 700 В постоянного тока по вспомогательным парам.

Климатическое исполнение кабелей УХЛ по ГОСТ 15150-69.

Кабель **МКПпВБЭпП** - для прокладки в пластмассовых трубопроводах, в земле, в условиях агрессивной среды, при отсутствии механических воздействий на кабель, в районах, не характеризующихся повышенным электромагнитным влиянием.

Кабель **МКПпВБЭпПБбШп** — то же, если кабель не подвергается значительным растягивающим или сдавливающим усилиям, в районах, не характеризующихся повышенным электромагнитным влиянием. Кабель **МКПпВБАШп** — для прокладки в пластмассовых трубопроводах, в земле, в условиях агрессивной среды, если кабель не подвергается значительным растягивающим усилиям, в районах, не характеризующихся повышенным электромагнитным влиянием.

Кабель **МКПпВБАБпШп** - для прокладки в грунтах всех категорий, кроме подверженных мерзлотным деформациям (вспучивание, морозобойные трещины), в районах характеризующихся повышенным электромагнитным влиянием, по дну несудоходных и несплавных рек со спокойным течением.

Пример записи условного обозначения кабелей:

МКПВБАБпШп 2х4х1,05+9х2х0,7/ОКЗ 2х4-0,36/0,22 - кабель марки МКПВБАБпШп с двумя высокочастотными четверками имеющими номинальный диаметр медных токопроводящих жил 1,05 мм; с девятью вспомогательными парами имеющими номинальный диаметр медных токопроводящих жил 0,7 мм; с восемью одномодовыми оптическими волокнами имеющими коэффициент затухания 0,36 и 0,22 дБ/км соответственно на длинах волн 1310 и 1550 нм; в алюминиевой оболочке, с защитным покровом типа БпШп.

КОНСТРУКЦИЯ

1 Сердечник.

Оптический элемент, две высокочастотные четверки, вспомогательный пучок, кордели заполнители из водоблокирующего материала, и вспомогательная (отдельная) пара (для кабеля с девятью вспомогательными парами) скручены в сердечник вокруг корделя - заполнителя из водоблокирующего материала и контрольной жилы, обмотаны по спирали лентой из водоблокирующего материала. Допускается прокладывать контрольную жилу поверх обмотки сердечника.

Сердечник кабеля влагонепроницаемый.

По согласованию с заказчиком допускается замена одной или двух высокочастотных четверок на четыре или восемь вспомогательных четверок, замена четырех вспомогательных четверок на одну высокочастотную четверку, замена четырех вспомогательных четверок и оптического элемента на одну или две высокочастотные четверки, с согласованной при заказе расцветкой.

1.1 Две высокочастотные четверки (2х4х1,05).

Жилы с изоляцией разного цвета скручены в звездную высокочастотную четверку вокруг центрального корделя из водоблокирующего материала и обмотаны по спирали лентой из водоблокирующего материала. В одной четверке проложена хлопчатобумажная нить красного цвета, в другой — зеленого.

В четверке две жилы, расположенные по диагонали, образуют рабочую пару. Изоляция жил первой пары каждой четверки должна иметь красный и белый цвет, второй пары - синий и зеленый.

Изоляция жил – пленко-пористо-пленочная, трехслойная: слой сплошного полиэтилена, слой пористого полиэтилена, слой сплошного полиэтилена. Номинальный диаметр изолированных жил 3,7 мм.

Токопроводящая жила однопроволочная из медной мягкой проволоки номинальным диаметром 1,05 мм **1.2 Вспомогательный пучок из вспомогательных пар** (6(8,9)x2x0,7).

Вспомогательные четверки, кордели-заполнители из водоблокирующего материала между вспомогательными четверками скручены во вспомогательный пучок вокруг корделя-заполнителя из водоблокирующего материала. Пучек обмотан по спирали лентой из водоблокирующего материала.

Расцветка хлопчатобумажных нитей вспомогательных четверок чередуется в следующем порядке: 1четверка- синяя, 2 четверка – белая, 3четверка - желтая, 4 четверка – коричневая.

Вспомогательные четверки скручены из четырех жил с изоляцией разного цвета вокруг центрального корделя из водоблокирующего материала, обмотаны по спирали лентой из водоблокирующего материала. В каждой четверке проложена хлопчатобумажная нить разного цвета.

В четверке две жилы, расположенные по диагонали, образуют вспомогательную пару. Изоляция жил первой пары каждой четверки должна иметь красный и белый (натуральный) цвет, второй пары – синий и зеленый.

Изоляция вспомогательных жил выполнена из изоляционного полиэтилена в виде сплошного концентрического слоя. Номинальный диаметр изолированных жил 1,6 мм.

Токопроводящая жила однопроволочная из медной мягкой проволоки номинальным диаметром 0,7 мм **1.3 Вспомогательная пара** (для кабеля с девятью вспомогательными парами.

Две жилы со сплошной изоляцией красного и белого (натурального) цвета скручены в пару и обмотаны по спирали лентой из водоблокирующего материала.

1.4 Контрольная жила.

Токопроводящая жила – стренга из медных проволок общим сечением 0,25-0,4 мм².

Изоляция выполнена из пористого полиэтилена. Номинальный диаметр изолированной жилы 1,2 мм.

1.5 Оптический элемент (ОКЗ 2х4 -0,36/0,22).

Два оптических модуля красного и зеленого цвета и три модуля-заполнителя из полиэтилена скручены в сердечник оптического элемента вокруг центрального силового элемента из стеклопластика номинальным диаметром 1,5 мм и обмотаны по открытой спирали синтетическими лентами или нитями. Межмодульное пространство оптического элемента заполнено гидрофобным заполнителем.

Поверх сердечника оптического элемента наложена с перекрытием синтетическая лента и оболочка из полиэтилена номинальной толщиной 1,3 мм. Номинальный диаметр по оболочке 8,2 мм.

Поверх оболочки оптического элемента продольно с перекрытием наложена лента из водоблокирующего материала, скрепленная синтетическими нитями.

Оптический модуль представляет собой трубку из полибутилентерефталата, внутри которой расположены четыре оптических волокна оранжевого, белого, синего и зеленого цветов. Внутримодульное пространство заполнено гидрофобинолом.

Номинальный диаметр оптических модулей и модулей-заполнителей - 2,0 мм.

Оптические волокна стандартные одномодовые в соответствии с требованиями МСЭ-Т G652 [1].

По согласованию с заказчиком допускается применение в составе кабелей дополнительно до 12 стандартных одномодовых оптических волокон, расположенных равномерно в дополнительных оптических модулях, введенных в конструкцию кабеля вместо корделей-заполнителей. Расцветка дополнительных оптических модулей согласовывается при заказе.

- **2 Поясная изоляция по сердечнику** состоит из ленты полиэтилентерефталатной, ленты из водоблокирующего материала, полиэтилентерефталатной ленты и ленты из водоблокирующего материала наложенных последовательно с перекрытием.
- Для кабелей МКПВБАШп и МКПВБАБпШп допускается наложение лент из кабельной бумаги вместо полиэтилентерефталатных лент.
- **3 Экран:** алюмополиэтиленовая лента с алюминиевым слоем номинальной толщиной не менее 0,1 мм для кабелей МКПпВБЭпП, МКПпВБЭпПБбШп, под лентой проложена медная луженная проволока;
- сварная алюминиевая оболочка по ГОСТ 24641-81 номинальной толщиной 1,2 мм для кабелей МКПВБАШп и МКПВБАБпШп.
- **4 Полиэтиленовая оболочка** накладывается поверх алюмополиэтиленовой ленты в кабелях МКПВБЭпП, МКПВБЭпПБбШп
- **5 Защитный покров по ГОСТ 7006-72** накладывается поверх полиэтиленовой оболочки в кабелях МКПВБЭпПБбШп и поверх алюминиевой оболочки в кабелях МКПВБАШп, МКПВБАБпШп.

Шп - слой битума и защитный полиэтиленовый (ПЭ) шланг.

БпШп - подушка из защитного ПЭ шланга и чередующихся слоев битума и крепированной бумаги, бронепокров из 2- стальных лент и наружный покров из защитного ПЭ шланга.

БбШп - ПЭ шланг, лента из крепированной бумаги, слой битума, бронепокров из 2-х стальных лент и наружный покров из защитного ПЭ шланга.

В кабеле марки МКПпВБЭпПБбШп возможно продольное наложение ленты из водоблокирующего материала поверх полиэтиленой оболочки вместо крепированной бумаги и битума с последующим продольным наложеним гофрированной брони из сталеполимерной леты. Толщина стального слоя сталеполимерной ленты не менее 0,2 мм.

Маркоразмер кабеля	Наружный диаметр кабеля, мм, не более	
МКПВБЭпП 2x4x1,05+6x2x0,7/ОКЗ 2x4-0,36/0,22 МКПВБЭпП 2x4x1,05+8x2x0,7/ОКЗ 2x4-0,36/0,22 МКПВБЭпП 2x4x1,05+9x2x0,7/ОКЗ 2x4-0,36/0,22	32	
МКПВБЭпПБбШп 2х4х1,05+6х2х0,7/ОКЗ 2х4-0,36/0,22 МКПВБЭпПБбШп 2х4х1,05+8х2х0,7/ОКЗ 2х4-0,36/0,22 МКПВБЭпПБбШп 2х4х1,05+9х2х0,7/ОКЗ 2х4-0,36/0,22	40	
МКПВБАШп 2х4х1,05+6х2х0,7/ОКЗ 2х4-0,36/0,22 МКПВБАШп 2х4х1,05+8х2х0,7/ОКЗ 2х4-0,36/0,22 МКПВБАШп 2х4х1,05+9х2х0,7/ОКЗ 2х4-0,36/0,22	36	
МКПВБАБпШп 2х4х1,05+6х2х0,7/ОКЗ 2х4-0,36/0,22 МКПВБАБпШп 2х4х1,05+8х2х0,7/ОКЗ 2х4-0,36/0,22 МКПВБАБпШп 2х4х1,05+9х2х0,7/ОКЗ 2х4-0,36/0,22	44	

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Наименование характеристики	Частота, кГц	Норма
Коэффициент затухания оптических волокон при 20°C, дБ/км, не более:		
- на длине волны 1310 нм		0,36
- на длине волны 1510 нм		0,30
Хроматическая дисперсия оптических волокон, пс/нм.км, не более:		
- в диапазоне длин волн (1285-1330) нм		3,5*
- в диапазоне длин волн (1525-1575) нм		18*
Числовая апертура оптических волокон на длине волны 1310 нм		0,13*
Электрическое сопротивление токопроводящих жил при 20°C, Ом/км, не более:	постоянный ток	
-для жил высокочастотных четверок		21,2
-для жил вспомогательных пар (четверок)		55,0
Омическая асимметрия жил в рабочей паре высокочастотных	постоянный	0,25
четверок, Ом/км, не более:	ток	
Электрическое сопротивление изоляции при 20 °C, МОм/км, не менее:	постоянный ток	
- для жил высокочастотных четверок и вспомогательных пар (четверок)		10000
- между контрольной жилой и экраном (алюминиевой оболочкой)		5
Рабочая емкость, нФ/км, не более	0,8 или 1,0	
- для рабочих пар высокочастотных четверок		32
- вспомогательных пар (четверок)		70
Переходное затухание на ближнем конце, дБ/км, не менее		
между парами высокочастотных четверок-100% измеренных значений	в диапазоне	58
-100 % измеренных значений	до 150	61
- между вспомогательными парами	ДО 130	
- между вспомогательными парами -100% измеренных значений	0,8	55
-90% измеренных значений	0,0	57
Емкостные связи и емкостная асимметрия жил высокочастотных	0,8 или 1,0	
четверок, пФ/км, не более		
K_1		95
K _{2,3}		825
E _{1,2}		825
— 1,2 Испытательное напряжение в течение 1 мин, В	0,05	<u> </u>
- между жилами высокочастотных четверок		2500
- между жилами вспомогательных пар (четверок)		1000
- между жилами высокочастотных четверок и вспомогательных пар		1000
- между жилами высокочастотных четверок и вспомогательных пар (четверок)		1000
(четверок) - между жилами высокочастотных четверок и вспомогательных пар		4000
- между жилами высокочастотных четверок и вспомогательных пар (четверок), соединенных вместе и экраном (алюминиевой оболочкой)		7000
(четверок), соединенных вместе и экраном (алюминиевой ооолочкой)		

- для рабочих пар высокочастотных четверок	150	2,1		
- для вспомогательных пар (четверок)	0,8	1,2		
Сопротивление изоляции подушки между экраном и броней и	Постоянный			
наружного шланга между экраном (алюминиевой оболочкой, броней)	ток			
и водой при 20 °C, МОм/км, не менее		10		
Идеальный коэффициент защитного действия при продольной ЭДС от	0,05			
30 до 250 В/км, не более:				
- для кабеля марки МКПВБЭпП		0,99		
- для кабеля марки МКПВБЭпБбШп		0,95		
- для кабеля марки МКПВБАШп		0,7		
- для кабеля марки МКПВБАБпШп		0,3		
* - Значения хроматической дисперсии и числовой апертуры оптических волокон приведены в				
качестве справочного материала				
Условия транспортирования кабеля должны соответствовать условиям хранения 6 по ГОСТ 15150-69				
Условия хранения кабеля должны соответствовать условиям 8 по ГОСТ 15150-69				
Класс пожарной опасности кабелей по НПБ 248-97-02.7.1.3				
Растягивающее усилие при прокладке, не более:				
Температура прокладки не ниже -10°C				
Температура эксплуатации в условиях фиксированного монтажа от -50°C до +50°C				
Радиус изгиба кабелей при прокладке и монтаже должен быть не менее 12,5 диаметров по защитной				
оболочке или шлангу кабелей с экраном из алюмополиэтиленовой ленты и не менее 15 диаметров				
по алюминиевой оболочке				
Минимальный срок службы при соблюдении условий транспортирования, хранения, прокладки,				
монтажа и эксплуатации				
Гарантийный срок эксплуатации со дня ввода кабеля в эксплуатацию, но не позднее 6 месяцев с				
даты изготовления				
Кабель поставляется на деревянных барабанах по ГОСТ 5151-79 строительными длинами				

1100 ± 20 м.